Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers
نویسندگان
چکیده
OBJECTIVE Our aim is to use multi-dimensional Bayesian network classifiers in order to predict the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors given an input set of respective resistance mutations that an HIV patient carries. MATERIALS AND METHODS Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models especially designed to solve multi-dimensional classification problems, where each input instance in the data set has to be assigned simultaneously to multiple output class variables that are not necessarily binary. In this paper, we introduce a new method, named MB-MBC, for learning MBCs from data by determining the Markov blanket around each class variable using the HITON algorithm. Our method is applied to both reverse transcriptase and protease data sets obtained from the Stanford HIV-1 database. RESULTS Regarding the prediction of antiretroviral combination therapies, the experimental study shows promising results in terms of classification accuracy compared with state-of-the-art MBC learning algorithms. For reverse transcriptase inhibitors, we get 71% and 11% in mean and global accuracy, respectively; while for protease inhibitors, we get more than 84% and 31% in mean and global accuracy, respectively. In addition, the analysis of MBC graphical structures lets us gain insight into both known and novel interactions between reverse transcriptase and protease inhibitors and their respective resistance mutations. CONCLUSION MB-MBC algorithm is a valuable tool to analyze the HIV-1 reverse transcriptase and protease inhibitors prediction problem and to discover interactions within and between these two classes of inhibitors.
منابع مشابه
Resistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach
Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...
متن کاملMulti-dimensional Bayesian Network Classifiers
We introduce the family of multi-dimensional Bayesian network classifiers. These classifiers include one or more class variables and multiple feature variables, which need not be modelled as being dependent on every class variable. Our family of multi-dimensional classifiers includes as special cases the well-known naive Bayesian and tree-augmented classifiers, yet offers better modelling capab...
متن کاملRobustness of Multi-dimensional Bayesian Network Classifiers
Multi-dimensional Bayesian network classifiers (MDCs) generalise the popular robustly performing one-dimensional classifiers (ODCs) to application domains that require an instance to be classified into a combination of classes. In previous work we compared the sensitivity of MDC and ODC output probabilities to small parameter inaccuracies. In this paper we extend our analyses and study the robu...
متن کاملMining multi-dimensional concept-drifting data streams using Bayesian network classifiers
In recent years, a plethora of approaches have been proposed to deal with the increasingly challenging task of mining concept-drifting data streams. However, most of these approaches can only be applied to uni-dimensional classification problems where each input instance has to be assigned to a single output class variable. The problem of mining multi-dimensional data streams, which includes mu...
متن کاملNetwork Location and Risk of Human Immunodeficiency Virus Transmission among Injecting Drug Users: Results of Multiple Membership Multilevel Modeling of Social Networks
Background: Despite the implementation of harm reduction program, some injecting drug users (IDU) continue to engage in high-risk behaviors. It seems that there are some social factors that contribute to risk of human immunodeficiency virus (HIV) transmission in IDUs. The aim of this study was to analysis the social network of IDUs and examines the effect of network location on HIV transmission...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artificial intelligence in medicine
دوره 57 3 شماره
صفحات -
تاریخ انتشار 2013